服务热线

400-123-4567
网站导航
新闻中心
当前位置: 华体会体育最新登录 > 新闻中心

仪器领悟学问点料理(1)

时间:2024-05-07 00:20:41 点击次数:

  仪器分析知识点整理(1) 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤...

  分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(

  曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M* 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 ⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场) ⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响? ①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰 ,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。 ②贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。 ③富燃火焰:指燃气大于化学元素计量的火焰。其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。 ④火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。 ⒊原子吸收光谱法中的干扰有哪些?如何消除这些干扰? 一.物理干扰:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸光度下降的效应,是非选择性干扰。 消除方法:①稀释试样;②配制与被测试样组成相近的标准溶液;③采用标准化加入法。 二.化学干扰:化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化,是选择性干扰,一般造成A下降。 消除方法:(1)选择合适的原子化方法:提高原子化温度,化学干扰会减小,在高温火焰中P043-不干扰钙的测定。 (2)加入释放剂(广泛应用) (3)加入保护剂:EDTA、8—羟基喹啉等,即有强的络合作用,又易于被破坏掉。 (4)加基体改进剂 (5)分离法 三. 电离干扰:在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰,造成A减少。负误差 消除方法:加入过量消电离剂。(所谓的消电离剂, 是电离电位较低的元素。加入时, 产生大量电子, 抑制被测元素电离。) 四. 光谱干扰: 吸收线重叠: ①非共振线干扰:多谱线元素--减小狭缝宽度或另选谱线 ②谱线重叠干扰--选其它分析线 五.背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。(分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。背景干扰,一般使吸收值增加。产生正误差。) 消除方法: ⑴用邻近非共振线校正背景 ⑵连续光源校正背景(氘灯扣背景) ⑶Zeaman 效应校正背景 ⑷自吸效应校正背景 第4章 红外吸收光谱法( IR ) P53 IR 与 UV-Vis 的比较 相同点:都是分子吸收光谱。 不同点: UV-Vis 是基于价电子能级跃迁而产生的电子光谱;主要用于样品的定量测定。 IR 则是分子振动或转动能级跃迁而产生的吸收光谱;主要用于有机化合物的定性分析和结构鉴定。 ★4.2 基本原理 吸收峰由何引起?每个基团或化学键能产生几个吸收峰?都出现在什么位置?不同吸收峰为什么有强有弱? 物质分子产生红外吸收的基本条件 (1)分子吸收的辐射能与其能级跃迁所需能量相等; (2)分子发生偶极距的变化(耦合作用)。 只有发生偶极矩变化的振动才能产生可观测的红外吸收光谱,称红外活性。 分子振动自由度:多原子分子的基本振动数目,也是基频吸收峰的数目。 为什么实际测得吸收峰数目远小于理论计算的振动自由度? ①没有偶极矩变化的振动不产生红外吸收,即非红外活性; ②相同频率的振动吸收重叠,即简并; ③仪器分辨率不够高; ④有些吸收带落在仪器检测范围之外。 4.2.5 分子振动频率(基团频率) 1. 官能团具有特征频率 基团频率:不同分子中同一类型的基团振动频率非常相近,都在一较窄的频率区间出现吸收谱带,其频率称基团频率。 基团频率区(也称官能团区):在4000~1300cm-1 范围内的吸收峰,有一共同特点:既每一吸收峰都和一定的官能团相对应,因此称为基团频率区。在基团频率区,原则上每个吸收峰都可以找到归属。 主要基团的红外特征吸收峰(P59~63)(4000 ~ 400 cm-1 ) ★1900~1200cm-1:双键伸缩振动区羰基(C=O):1650~1900cm–1。在羰基化合物中,此吸收一般为最强峰。 红外谱图解析顺序:先看官能团区,再看指纹区。 1. 产生红外吸收光谱的条件 2. 分子基本振动类型和振动自由度 3. 影响吸收峰强度的因素 4. 基团频率及谱图解析 5. 影响基团频率的因素 干涉仪:是FT-IR光谱仪的核心部件,作用是将复色光变为干涉光。 4.5 红外光谱法的应用 一、定性分析 已知物的鉴定--谱图比对,未知物结构的确定,收集试样的有关数据和资料,确定未知物的不饱和度(P71) 不饱和度有如下规律: 链状饱和脂肪族化合物不饱和度为0; 一个双键或一个环状结构的不饱和度为1; 一个三键或两个双键及脂环的不饱和度为2; 一个苯环的不饱和度为4。 二、定量分析 理论依据:朗伯-比尔定律 优点: (1)有许多谱带可供选择,有利于排除干扰; (2)气、液、固均可测定。 1.分子产生红外吸收的条件是什么? (1)分子吸收的辐射能与其能级跃迁所需能量相等; (2)分子发生偶极距的变化(耦合作用)。 2.何谓特征吸收峰?影响吸收峰强度的主要因素是什么? 能代表基团存在、并有较高强度的吸收谱带称基团频率,其所在位置称特征吸收峰。 ①与分子跃迁概率有关,②与分子偶极距有关(P59) 3.红外谱图解析的三要素是什么? 红外谱图解析三要素:位置、强度、峰形。 4.解释名词:基团频率区 指纹区 相关峰 5.如何利用红外吸收光谱区别烷烃、烯烃、炔烃? 利用基团的红外特征吸收峰区别: 烷烃:饱和碳的C-H吸收峰

仪器领悟学问点料理(1)

  3000cm-1, C = C 双键:1600~1670cm–1 C≡C-叁键:2100~2260 cm–1 6.红外光谱法对试样有哪些要求? (1)单一组分纯物质,纯度

  98%; (2)样品中不含游离水; (3)要选择合适的浓度和测试厚度。 7.简述振动光谱的特点以及它们在分析化学中的重要性。 优点:特征性强,可靠性高、样品测定范围广、用量少、测定速度快、操作简便、重现性好。 局限性:有些物质不能产生红外吸收;有些物质不能用红外鉴别; 有些吸收峰,尤其是指纹峰不能全部指认;定量分析的灵敏度较低。 第十九章 质谱法(P400) 思考题 2.质谱仪由哪几部分组成?各部分的作用是什么?(划出质谱仪的方框示意图) 进样系统:高效重复地将样品引到离子源中并且不能造成真空度的降低。 离子源:将进样系统引入的气态样品分子转化成离子。 质量分析器:依据不同方式,将样品离子按质荷比m/z分开。 检测器:检测来自质量分析器的离子流并转化成电信号。 显示系统:接收来自检测器的电信号并显示在屏幕上。 真空系统:保证质谱仪离子产生及经过的系统处于高线.离子源的作用是什么?试述EI(电子电离源)和CI(化学电离源)离子源的原理及特点。 离子源:将进样系统引入的气态样品分子转化成离子。 EI(电子电离源)原理:失去电子 特点:电离效率高,灵敏度高;离子碎片多,有丰富的结构信息;有标准质谱图库;但常常没分子离子峰;只适用于易气化、热稳定的化合物。 CI(化学电离源)原理:离子加合 特点:准分子离子峰强, 可获得分子量信息;谱图简单;但不能进行谱库检索, 只适用于易气化、热稳定的化合物 4.为何质谱仪需要高真空? 质谱仪需要在高线 Pa ①大量氧会烧坏离子源的灯丝; ②用作加速离子的几千伏高压会引起放电; ③引起额外的离子-分子反应,改变裂解模型,谱图复杂化; ④影响灵敏度。 5.四极杆质量分析器如何实现质谱图的全扫描分析和选择离子分析? ①当U/V维持一个定值时,某一U或V值对应只有一个离子能稳定通过四极杆; ②连续改变U或V值,可得到一张全扫描图,此谱图可用于定性; ③固定一个或多个U值,可得到高灵敏度的分析结果,此方法用于定量分析。 第十五章 色谱法引论(P300) 2.按固定相外形不同色谱法是如何分类的? 是按色谱柱分类: ①平面色谱法:薄层色谱法、纸色谱法 ②柱色谱法:填充柱法、毛细管柱色谱法 6.分配系数在色谱分析中的意义是什么? ①K值大的组分,在柱内移动的速度慢,滞留在固定相中的时间长,后流出柱子; ②分配系数是色谱分离的依据; ③柱温是影响分配系数的一个重要参数。 7.什么是选择因子?它表征的意义是什么? 是A,B两组分的调整保留时间的比值α= t’r(B)/t’r(A)>1 意义:表示两组分在给定柱子上的选择性,值越大说明柱子的选择性越好。 8.什么是分配比(即容量因子)?它表征的意义是什么? 是指在一定温度和压力下,组分在两相分配达到平衡时,分配在固定相和流动相的质量比。K=ms/mm 意义:是衡量色谱柱对被分离组分保留能力的重要参数; 同一色谱柱对不同物质的柱效能是不一样的 15.分离度可作为色谱柱的总分离效能指标。 第十六章 气相色谱法(P318) 1.气相色谱法适合分析什么类型的样品? 适用范围:热稳定性好,沸点较低的有机及无机化合物分离。 2.哪类固定液在气相色谱法中最为常用? 硅氧烷类是目前应用最广泛的通用型固定液。(使用温度范围宽(50~350℃),硅氧烷类经不同的基团修饰可得到不同极性的固定相。) 3.气相色谱法固定相的选择原则? 相似相溶原则 ①非极性试样选用非极性固定液,组分沸点低的先流出; ②极性试样选用极性固定液,极性小的先流出 ③非极性和极性混合物试样一般选用极性固定液,非极性组分先出; ④能形成氢键的试样一般选择极性大或是氢键型的固定液,不易形成氢键的先流出。 6.气相色谱法各检测器适于分析的样品? 热导检测器: 通用 浓度型 所有 氢火焰检测器: 通用 质量型 含碳 电子捕获检测器:选择 浓度型 电负性 火焰光度检测器:选择 质量型 硫、磷 7.气相色谱法常用的定量分析方法有哪些?各方法的适用条件。(1)外标法 适用条件:对进样量的准确性控制要求较高;操作条件变化对结果准确性影响较大;操作简单,适用于大批量试样的快速分析。 (2)归一化法 适用条件:仅适用于试样中所有组分全出峰的情况;操作条件的变动对测定结果影响不大;归一化法简便、准确。 (3)内标法(内标标准曲线法) 适用条件:试样中所有组分不能全部出峰时;定量分析中只要求测定某一个或几个组分;样品前处理复杂 第17章 高效液相色谱法(HPLC) P348 2、现代高效液相色谱法的特点: (1)高效;(2)高压;(3)高速;(4)高灵敏度 3、色谱分离的实质: 色谱分离的实质是样品分子(即溶质)与溶剂(即流动相或洗脱液)以及固定相分子间的作用,作用力的大小,决定色谱过程的保留行为。 5、高压输液泵 性能:⑴足够的输出压力 ⑵输出恒定的流量 ⑶输出流动相的流量范围可调节 ⑷压力平稳,脉动小 6、在线脱气装置 在线脱气、超声脱气、真空脱气等 作用:脱去流动相中的溶解气体。流动相先经过脱气装置再输送到色谱柱。 脱气不好时有气泡,导致流动相流速不稳定,造成基线、梯度洗脱装置 以一定速度改变多种溶剂的配比淋洗,目的是分离多组容量因子相差较大的组分。 作用:缩短分析时间,提高分离度,改善峰形,提高监测灵敏度 8、影响分离的因素 影响分离的主要因素有流动相的流量、性质和极性。 9、选择流动相时应注意的几个问题: (1)尽量使用高纯度试剂作流动相。 (2)避免流动相与固定相发生作用而使柱效下降或损坏柱子。 (3)试样在流动相中应有适宜的溶解度。 (4)流动相同时还应满足检测器的要求。 10、提高柱效的方法(降低板高): ①固定相填料要均一,颗粒细,装填均匀。 ②流动相粘度低。 ③低流速。 ④适当升高柱温。 11、固定相的选择: 液相色谱的固定相可以是吸附剂、化学键合固定相(或在惰性载体表面涂上一层液膜)、离子交换树脂或多孔性凝胶;流动相是各种溶剂。被分离混合物由流动相液体推动进入色谱柱。根据各组分在固定相及流动相中的吸附能力、分配系数、离子交换作用或分子尺寸大小的差异进行分离。 12、高效液相色谱法的分离机理及分类 类 型 主要分离机理 吸附色谱 吸附能,氢键 分配色谱 疏水分配作用 尺寸排斥色谱 溶质分子大小 离子交换色谱 库仑力 13、反相色谱的优点 易调节k或a 易分离非离子化合物,离子化合物和可电离化合物 流动相便宜 可预言洗脱顺序 适宜梯度洗脱 , 求出L2=60.1cm 2 、荧光光谱仪构造以及与紫外可见光光度计相比,有什么不同? 答:光源→单色器→吸收池→单色器→检测器→信号显示系统。光源:前者的激发光强度比后者吸收测量中的光源强度大。单色器:前者有两个单色器,分别为激发单色器和发射单色器,后者只有一个。检测器:荧光强度很弱,检测器需有较高的灵敏度。试样池,荧光分析中要求用石英材料,由于荧光强度与透射光强度相比小得多,在测量荧光时必须严格消除透过光的影响,因此,测量中是在与入射光和透射光垂直的方向来测。3 ,原子吸收光谱仪组成及其作用? 答:光源→原子化器→单色器→检测器→信号显示系统;光源:提供待测元素的特征光谱,获得较高的灵敏度和准确度。原子化器:将试样中离子转变为原子蒸气。单色器:可测元素的共振吸收曲线与临近谱线分开。检测器:使光信号转变为电信号,以便读出数据。信号显示系统:将讯号经处理器放大,把检测结果显示出来。4 、火焰原子吸收光谱分析中,火焰的类型有哪三种,分别适合哪些元素的测定? 答:①化学计量火焰(中性火焰,温度高,稳定,干扰小,背景低。燃气与助燃器之比与化学计量关系相近,适用于大多数元素)②富燃火焰(燃气大于化学计量,具有还原性,温度低干扰多,背景高,适用于易形成难离解氧化物的元素)③贫燃火焰(燃气小于化学计量,具有氧化性,温度高,适用于易解离,电离的元素) 5;石墨炉原子吸收光谱中,石墨炉升温程序包括哪几步,作用分别是什么? 答:①干燥:去除溶剂,防止样品溅射。②灰化:使基体和有机物尽量挥发出去。③原子化:待测物化合物分解为基态原子。④净化:样品测定完成,高温去残渣,净化石墨管。 6,原子吸收光谱法的干扰有哪些?分别是如何产生的?怎样消除? 答:①物理干扰。产生:在试样转移,气溶胶形成,试样热解,灰化和被测元素原子化等过程中,由于试样的物理特性变化而引起原子吸收信号下降的效益。消除:配制与待测液有近似组成的标准溶液,标准加入法,稀释。②化学干扰。产生:由于被测元素原子与共存组分化学反应生成稳定化合物,影响被测元素原子化。消除:加入释放剂,加保护剂,饱和剂,加电离缓冲剂。③电离干扰。产生:高温条件下,原子会电离,使基态原子数减少,吸光度值下降,消除:加入过量消消电离剂。④光谱干扰。产生:吸收线重叠。消除:另选分析线。⑤背景干扰。产生:分子吸收和光散射。消除:背景校正。 7,气相色谱定量的方法有几种?各有哪些优缺点?答:a,归一化法:简便准确,即使进样不准确,对结果也无影响,操作条件的变动对结果影响很小。缺点:试样中组分必须全部出峰。 b,内标法:定量准确,进样量和操作条件不要求严格控制,不要求试样中组分全部出峰。缺点:操作麻烦,每次分析都要称取试样和内标物质量,不适用于快速控制分析。 c,外表法:优点:计算和操作都简便,不必用校正因子。缺点:要求操作条件稳定,进样量重复性好,否则对分析结果影响很大。 8,与气相色谱法相比,高效液相色谱法有何特点?答:①气相色谱法分析对象只限于分析气体和沸点较低的化合物,它们仅占有机物总量的百分之二十,对于百分之八十的高沸点热稳定性差,摩尔质量大的物质,主要采用高效液相色谱法。 ②气相色谱采用的流动相是惰性气体,它对组分没有亲和力,即不产生相互作用力,仅起运载作用。而高效液相色谱法流动相可选不同极性的液体,选择余地大,对组分可产生一定亲和力,并参与固定相对组分作用的选择竞争,因此流动相对分离器很大作用。为选择最佳分离条件提供了方便。 ③气相色谱法一般在较高温度下进行,而高效液相色谱法可在低温下进行。 9;原子吸收光谱法常用的原子化方法有哪些?各自的特点如何? 答:a,火焰原子化法:原理——由化学火焰的燃烧热提供能量,使被测元素原子化。特点:火焰稳定,重现性好,精密度高,应用范围广,但原子化效率低。 b,非火焰原子化法。分为两类:石墨炉原子化器和石英管原子化器。石墨炉原理:大电流通过石墨管产生高热高温,使试样原子化。特点:原子化效率高,绝对灵敏度高,稳定高。但精密度差,测定速度慢,操作不简便,装置复杂。石英管原理:将气态分析物引入石英管内,在较低温度下实现原子化。特点:一般不受试样中存在的基体干扰,进样效率高,选择性好。 10,在电位法中,总离子强度调节缓冲剂的作用?答:a,维持溶液中的离子强度足够大且为恒定值。 b,维持溶液的ph值为给定值。 c,消除干扰离子干扰。 d,溶液接电位稳定。 11,气相色谱法中选择固定液的要求是什么? 答:a,选择性好b,低蒸气压,热稳定好,化学稳定性好。c,有一定溶解度。d,凝固点低,粘度适当。 12,原子吸收光谱法操作条件如何选择? 答:a,分析线的选择:选择元素的共振线。 b,狭缝宽度:不引起吸光度减小的最大狭缝宽度为应选择的合适狭缝宽度。 c,灯电流:保证稳定和有适合的光强输出的情况下,尽量选用较低的工作电流。 d,原子化条件:影响原子化效率的主要因素,影响测定的灵敏度。 e,选择合适的进样量。 13;气相色谱检测器主要有哪几种?各自工作原理及如何根据样品选择? 答:a,热导检测器(TCD)浓度型,原理:根据物质具有不同的热导系数原理制成。样品选择:几乎对所有物质都有响应,通用性好,如酒中水含量检测。 b,氢火焰离子化检测器(FID)原理:利用含碳有机物在氢火焰中燃烧产生离子,在外加的电场作用下,使离子形成电子流,根据离子流产生的电信号强度,检测被色谱柱分离的组分。样品选择:大多数含碳有机化合物,对无机物,水,永久性气体基本无影响。 c,电子捕获检测器(ECD)浓度型,原理:是一种放射性离子化检测器。样品选择:对有电负性物质的检测有很高灵敏度,特别是检测农药残余。 d,火焰光度检测器(FPD)原理:根据硫磷在富氢火焰中燃烧生成化学发光物质,并能发射出特征波长的光,

  特征光谱,检测硫与磷。样品选择:对含硫磷化合物具有高灵敏度。 14;气相色谱仪由哪几部分组成?各自功能及要求如何? 答:a,气路系统【是一个载气连续运行的密闭管路系统,通过该系统可获得纯净,流速稳定的载气】 b,进样系统【包括进样器和气化室两部分,气化室的作用是将液体试样瞬间气化的装置】 c,分离系统【由色谱柱组成,是色谱仪的核心部件,作用是分离样品】 d;温控系统【温度是色谱分离条件的重要选择参数,前三者都需要控制温度】 e,检测系统【被色谱柱分离后的组分依次进入检测器,按其浓度或质量随时间的变化转变成电信号,经放大后记录和显示,给出色谱图】 15在电分析中,对参比电极通常有哪些要求? 答:a,电极反应可逆,符合能斯特方程。 b,电势不随时间变化。 c,微小电流流过时,能迅速恢复原状。 d,温度影响小,虽无完全符合的,但一些可以基本满足要求。 对于参比电极应满足三个条件:可逆性,重现性和稳定性。衡量可逆性的尺度是交换电流,如果电极有较大的交换电流,则使用时如有微量电流通过,其电极电位保持恒定,所以参比电极都是难以极化的。重现性是指当温度或浓度改变时,电极仍能按能斯特公式响应而无滞后现象,以及用标准方法制备的电极具有相似的电位值。稳定性是指在测量时随稳定等环境因素影响较小。 16,气相色谱固定相的选择依据是什么?如何更具样品性质选择固定相? 答:气象色谱固定相由载体和固定液构成。A固定液要求 1,热稳定好,蒸汽压低,流失少。 2,化学稳定性好,不与其他物质反应。 3试样的各组分由合适的溶解能力。 4,对各组分具有良好的选择性。 B,载体的要求: 1,有足够大的表面积和良好的孔穴结构。2,形状

  ,具有一定的机械强度。 按分离机理分类,色谱法可分为吸收色谱,分配色谱,凝胶色谱,离子交换色谱,亲和色谱。按两相状态分类:气相色谱,液相色谱,超临届流体色谱。按固定相分类:柱色谱和平面色谱。 2荧光化合物都有两个特征光谱:激发光谱和发射光谱。 溶剂效应:紫外可见光光谱分析中,由于溶剂极性的不同会引起某些化合物吸收光谱的红移或蓝移的现象。 4,1955年物理学家提出,用峰值吸收来代替积分吸收,从而解决了原子吸收的困难。 5,荧光素和酚酞的结构十分相似,但荧光素在溶液中有很强的荧光,而酚酞没有,原因是荧光分子具有刚性平面结构。 7,气相色谱中,控制温度主要是对色谱柱炉,气化室和检测器三处的温度控制。 8,对固定相的选择并不是没有规律可循,一般可按相似相溶原则来选择。 9,高效液相色谱仪由高压输液系统,进样系统,分离系统和检测系统四部分。 10,仪器分析所涉及的定量分析中常用的校正方法:标准曲线法,内标法和标准加入法。 11,色谱定量分析中常用的方法有外标法,内标法,归一化法。 12,多普勒变宽的影响因素:波长,温度,相对原子质量。 13,自吸变宽:由自吸现象而引起的现象(同种原子) 14,理论塔板数反映了柱效能。 15,气相色谱分析中,采用程序升温的目的是改善分离度。 16,压力变宽:分为洛伦兹变宽和共振变宽。 17,原子化器分为火焰原子化器和电热原子化器。 18,影响紫外可见吸收光谱的因素有立体化学效应,共轭效应,溶剂的影响【选择溶剂时应考虑:a,溶剂在使用波段有无吸收b,物质的溶解度c,是否影响光谱的精细结构d,是否改变吸收峰的波长】,ph的影响。 19,紫外光源:氢灯,氘灯。可见光源:卤钨灯和钨丝灯。 20、石英池适用于可见光区和紫外光区,玻璃吸收池只适用于可见光区。(荧光) 21,吸光系数的影响因素吸光物质的性质,温度,溶液性质,入射光波长。 22,荧光强度的影响因素:随温度升高荧光物质溶液的荧光量子产率及荧光强度将降低。极性增强,荧光效率增加,粘度增加,荧光效率增加。介质酸度的影响。 23,提高气相色谱柱效的方法:a,采用合适的载气,控制载气流速于最佳流速,b,减小固定相颗粒直径。c,色谱柱填充均匀。d,减小固定相液膜厚度。 24,提高液相色谱柱效的方法:a,采用合适的流动相,控制相对较低的流动相流速。b,减小固定相颗粒直径。c,色谱柱填充均匀。d,减小固定相液膜厚度。 25,浓度型检测器有热导检测器和电子检测器,质量型检测器有火焰离子化检测器和火焰光度检测器。26,固定相与组分分子间的作用力有定向力,诱导力,色散力,氢键力。 27,气路系统常用载气:氦气,氢气,氮气,氩气。当载气流速小于最佳流速时,为提高柱效应选氩气。 28,影响谱线变宽的因素:自然变宽,多普勒变宽,压力变宽,自吸变宽。 29,用气相色谱法定性的依据是保留时间。用气相色谱法定量的依据是色谱峰面积。 30,气相色谱的分离原理是利用不同组分在两相间具有不同的分离度。 原子发射光谱分析 原子发射光谱分析的基本原理(依据) ICP光源形成的原理及特点(习题2) :ICP是利用高频加热原理。 当在感应线圈上施加高频电场时,由于某种原因(如电火花等)在等离子体工作气体中部分电离产生的带电粒子在高频交变电磁场的作用下做高速运动,碰撞气体原子,使之迅速、大量电离,形成雪崩式放电,电离的气体在垂直于磁场方向的截面上形成闭合环形的涡流,在感应线圈内形成相当于变压器的次级线圈并同相当于初级线圈的感应线圈耦合,这种高频感应电流产生的高温又将气体加热、电离,并在管口形成一个火炬状的稳定的等离子体焰矩。 其特点如下: 工作温度高、同时工作气体为惰性气体,因此原子化条件良好,有利于难熔化合物的分解及元素的激发,对大多数元素有很高的灵敏度。 (2)由于趋肤效应的存在,稳定性高,自吸现象小,测定的线)由于电子密度高,所以碱金属的电离引起的干扰较小。 (4)ICP属无极放电,不存在电极污染现象。 (5)ICP的载气流速较低,有利于试样在中央通道中充分激发,而且耗样量也较少。 (6)采用惰性气体作工作气体,因而光谱背景干扰少。 掌握特征谱线、共振线、灵敏线、最后线、分析线的含义及其它们之间的内在联系。(习题3) :由激发态向基态跃迁所发射的谱线称为共振线(resonance line)。共振线具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。 灵敏线(sensitive line) 是元素激发电位低、强度较大的谱线,多是共振线(resonance line)。 最后线(last line) 是指当样品中某元素的含量逐渐减少时,最后仍能观察到的几条谱线。它也是该元素的最灵敏线。 进行分析时所使用的谱线称为 分析线(analytical line)。 由于共振线是最强的谱线,所以在没有其它谱线干扰的情况下,通常选择共振线作为分析线。 发射光谱定性分析的基本原理和常用方法。(习题5 由于各种元素的原子结构不同,在光源的激发下,可以产生各自的特征谱线,其波长是由每种元素的原子性质决定的,具有特征性和唯一性,因此可以通过检查谱片上有无特征谱线的出现来确定该元素是否存在仪器分析,这就是光谱定性分析的基础。 进行光谱定性分析有以下三种方法: (1)比较法。将要检出元素的纯物质或纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱。若两者谱线出现在同一波长位置上,即可说明某一元素的某条谱线存在。本方法简单易行,但只适用于试样中指定组分的定性。 (2)对于复杂组分及其光谱定性全分析,需要用铁的光谱进行比较。采用铁的光谱作为波长的标尺,来判断其他元素的谱线)当上述两种方法均无法确定未知试样中某些谱线属于何种元素时,可以采用波长比较法。即准确测出该谱线的波长,然后从元素的波长表中查出未知谱线相对应的元素进行定性。 光谱定量分析的依据是什么?为什么要采用内标?简述内标法原理。内标元素和分析线对应具备哪些条件?为什么?(习题8) 解:在光谱定量分析中,元素谱线的强度I与该元素在试样中的浓度C呈下述关系: I= aCb 在一定条件下,a,b为常数,因此 log I = b logC +loga 亦即谱线强度的对数与浓度对数呈线性关系,这就是光谱定量分析的依据。 在光谱定量分析时,由于a,b随被测元素的含量及实验条件(如蒸发、激发条件,取样量,感光板特性及显影条件等)的变化而变化,而且这种变化往往很难避免,因此要根据谱线强度的绝对值进行定量常常难以得到准确结果。所以常采用内标法消除工作条件的变化对测定结果的影响。 用内标法进行测定时,是在被测元素的谱线中选择一条谱线作为分析线,在基体元素(或定量加入的其它元素)的谱线中选择一条与分析线均称的谱线作为内标线,组成分析线对,利用分析线与内标线绝对强度的比值及相对强度来进行定量分析。这时存在如下的基本关系: logR = log(I1/I2) = b1logC + logA 其中A=a1/I2 内标元素和分析线对应具备的条件 ①内标元素与被测元素在光源作用下应有相近的蒸发性质; ②内标元素若是外加的,必须是试样中不含或含量极少可以忽略的。 ③分析线对选择需匹配; 两条原子线或两条离子线,两条谱线的强度不宜相差过大。 ④分析线对两条谱线的激发电位相近。 若内标元素与被测元素的电离电位相近,分析线对激发电位也相近,这样的分析线对称为“均匀线对”。 ⑤分析线对波长应尽可能接近。 分析线对两条谱线应没有自吸或自吸很小,并不受其它谱线的干扰。 ⑥内标元素含量一定的。 原子吸收光谱分析 简述原子吸收分光光度分析的基本原理(依据)。(习题1)要掌握几个重要前提条件: 1)由空心阴极灯发射锐线)试样原子化蒸汽对锐线光源所发射的特征谱线进行吸收(原子化的方法?习题6); 3)以峰值吸收代替积分吸收。满足以上条件,在一定浓度范围和一定火焰宽度的情况下,A=kc。 原子吸收分析中产生背景吸收的原因及影响,减免措施与原理。 定量分析的依据和方法。(习题9) AAS是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析的方法.紫外吸收光谱分析 解:背景吸收是由于原子化器中的气态分子对光的吸收或高浓度盐的固体微粒对光的散射而引起的,它们属于一种宽频带吸收.而且这种影响一般随着波长的减短而增大,同时随着基体元素浓度的增加而增大,并与火焰条件有关.可以针对不同情况采取不同的措施,例如火焰成分中OH,CH,CO等对光的吸收主要影响信号的稳定性,可以通过零点调节来消除,由于这种吸收随波长的减小而增加,所以当测定吸收波长位于远紫外区的元素时,可以选用空气-H2,Ar-H2火焰.对于火焰中金属盐或氧化物、氢氧化物引起的吸收通常利用高温火焰就可消除。 有时,对于背景的吸收也可利用以下方法进行校正:(1)邻近线)用与试液组成相似的标液校正;(3)分离基体. 解:石墨炉原子化器是将一个石墨管固定在两个电极之间而制成的,在惰性气体保护下以大电流通过石墨管,将石墨管加热至高温而使样品原子化. 与火焰原子化相比,在石墨炉原子化器中,试样几乎可以全部原子化,因而测定灵敏度高.对于易形成难熔氧化物的元素,以及试样含量很低或试样量很少时非常适用. 缺点:共存化合物的干扰大,由于取样量少,所以进样量及注入管内位置的变动会引起误差,因而重现性较差. 解:在一定的浓度范围和一定的火焰宽度条件下,当采用锐线光源时,溶液的吸光度与待测元素浓度成正比关系,这就是原子吸收光谱定量分析的依据。 常用两种方法进行定量分析: (1)标准曲线法:该方法简便、快速,但仅适用于组成简单的试样。 (2)标准加入法:本方法适用于试样的确切组分未知的情况。不适合于曲线、电子跃迁的类型有哪些?各种跃迁所需能量大小顺序如何?各处于什么波长范围?(习题2) 2、助色团、生色团的含义。有机化合物有几种类型紫外吸收带?它们产生的原因是什么?有什么特点?(习题4) 3、紫外吸收光谱的应用:定性分析、有机化合物分子结构的推断、纯度检查、定量测定 应特别注意: 有机化合物分子结构的推断,应用吸收波长与共轭程度的关系。(习题7,8,9) 4、紫外及可见分光光度计与可见分光光度计比较,有什么不同之处?(习题10) 红外吸收光谱分析 红外吸收光谱产生条件?是否所有的分子振动都会产生红外吸收光谱?为什么?(习题1) 掌握基本概念:何谓基团频率?它有什么重要性及用途?(习题3) 何谓指纹区?它有什么特点和用途?(习题6) 熟记主要基团的基团频率,能指出给定图谱的主要谱峰的来源。(表10-3,图10-9,图10-10) 解:从化学键的性质考虑,与有机化合物分子的紫外-可见吸收光谱有关的电子为:形成单键的s电子,形成双键的p电子以及未共享的或称为非键的n电子.电子跃迁发生在电子基态分子轨道和反键轨道之间或基态原子的非键轨道和反键轨道之间.处于基态的电子吸收了一定的能量的光子之后,可分别发生s→s*,s →p*,p → s*,n →s*,p →p*,n→p*等跃迁类型.p →p*,n →p*所需能量较小,吸收波长大多落在紫外和可见光区,是紫外-可见吸收光谱的主要跃迁类型.四种主要跃迁类型所需能量DE大小顺序为:n →p*

  (a)>

  » (c) (b) 中有两个共轭双键,存在K吸收带,(a)中有两个双键,而 (c )中只有一个双键. 首先光源不同,紫外用氢灯或氘灯,而可见用钨灯,因为二者发出的光的波长范围不同. 从单色器来说,如果用棱镜做单色器,则紫外必须使用石英棱镜,可见则石英棱镜或玻璃棱镜均可使用,而光栅则二者均可使用,这主要是由于玻璃能吸收紫外光的缘故. 从吸收池来看,紫外只能使用石英吸收池,而可见则玻璃、石英均可使用,原因同上。 从检测器来看,可见区一般使用氧化铯光电管,它适用的波长范围为625-1000nm,紫外用锑铯光电管,其波长范围为200-625nm. 红外吸收光谱分析 红外吸收光谱产生条件?是否所有的分子振动都会产生红外吸收光谱?为什么?(习题1) 掌握基本概念:何谓基团频率?它有什么重要性及用途?(习题3) 何谓指纹区?它有什么特点和用途?(习题6) 熟记主要基团的基团频率,能指出给定图谱的主要谱峰的来源。(表10-3,图10-9,图10-10) 解:条件:激发能与分子的振动能级差相匹配,同时有偶极矩的变化. 并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱. 解:与一定结构单元相联系的振动频率称为基团频率,基团频率大多集中在4000-1350 cm-1,称为基团频率区,基团频率可用于鉴定官能团. 解:在IR光谱中,频率位于1350-650cm-1的低频区称为指纹区.指纹区的主要价值在于表示整个分子的特征,因而适用于与标准谱图或已知物谱图的对照,以得出未知物与已知物是否相同的准确结论,任何两个化合物的指纹区特征都是不相同的. 1. 高效液相色谱仪所用溶剂在放入贮液罐之前必须经过0.45μm滤膜过滤,除去溶剂中的机械杂质,以防输液管道或进样阀产生阻塞现象。所有溶剂在上机使用前必须脱气;因为色谱住是带压力操作的,检测器是在常压下工作。若流动相中所含有的空气不除去,则流动相通过柱子时其中的气泡受到压力而压缩,流出柱子进入检测器时因常压而将气泡释放出来,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在梯度洗脱时尤其突出。 2. 高效液相色谱的定量方法与气相色谱定量方法类似,主要有归一化法、外标法和内标法。其中内标法是比较精确的定量方法。它是将已知量的内标物加到已知量的试样中,在进行色谱测定后,待测组分峰面积和内标物峰面积之比等于待测组分的质量与内标物质量之比,求出待测组分的质量,进而求出待测组分的含量 1.以单聚焦质谱仪为例,说明组成仪器各个主要部分的作用及原理 答:(1)真空系统,质谱仪的离子源、质量分析器、检测器必须处于高线)进样系统,将样品气化为蒸气送入质谱仪离子源中。样品在进样系统中被适当加热后转化为即转化为气体。(3)离子源,被分析的气体或蒸气进入离子源后通过电子轰击(电子轰击离子源)、化学电离(化学电离源)、场致电离(场致电离源)、场解析电离(场解吸电离源)或快离子轰击电离(快离子轰击电离源)等转化为碎片离子,然后进入(4)质量分析器,自离子源产生的离子束在加速电极电场作用下被加速获得一定的动能,再进入垂直于离子运动方向的均匀磁场中,由于受到磁场力的作用而改变运动方向作圆周运动,使不同质荷比的离子顺序到达检测器产生检测信号而得到质谱图。(5)离子检测器,通常以电子倍增管检测离子流。 2.双聚焦质谱仪为什么能提高仪器的分辨率? 答 :在双聚焦质谱仪中,同时采用电场和磁场组成的质量分析器,因而不仅可以实现方向聚焦,即将质荷比相同而入射方向不同的离子聚焦,而且可以实现速度聚焦,即将质荷比相同,而速度(能量)不同的离子聚焦。所以双聚焦质谱仪比单聚焦质谱仪(只能实现方向聚焦)具有更高的分辨率。 3.试述飞行时间质谱计的工作原理,它有什么特点? 答:飞行时间质谱计的工作原理很简单,仪器如下图所示: 如图所示,飞行时间质量分析器的主要部分是一个既无电场也无磁场的离子漂移管。当离子在加速区得到动能( )后,以速度 进入自由空间(漂移区),则 (T为离子飞过漂移区的时间,L为漂移区长度),可以看出,离子的漂移时间与其质荷比的平方根成正比,即离子的质荷比越大,则飞行时间越长,反之依然。 飞行时间质谱计的特点为:(1)工作原理简单。质量分析器既不需要磁场,又不需要场,只需要直线漂移空间,因此,仪器的机械结构较简单,增长漂移路程L就可以提高分辨本领。(2)快速。在约20ms时间内,就可以记录质量为0—200a.m.u.的离子。(3)要在短时间内快速记录微弱的离子流,只能采用高灵敏、低噪音的宽频带电子倍增管,因此仪器的电子部分要求高。(4)质量分析系统需处于脉冲工作状态,否则就无法确定离子的起始和到达时间,无法区分到达接受器的不同质量。 4.比较电子轰击离子源、场致电离源及场解析电离源的特点。 答:(1)电子轰击源,电子轰击的能量远高于普通化学键的键能,因此过剩的能量引起分子多个键的断裂,产生许多碎片离子,因而能够提供分子结构的一些重要的官能团信息,但对于相对分子质量较大、或极性大,难气化,热稳定性差的有机化合物,在加热和电子轰击下,分子易破碎,难以给出完整分子离子信息。(2)在场致电离源的质谱图上,分子离子峰很清楚,但碎片峰则较弱,因而对于相对分子质量的测定有利,但缺乏分子结构信息。(3)场解析电离源,电离原理与场致电离相同,解吸试样分子所需能量远低于气化所需能量,因而有机化合物不会发生热分解,即使热稳定性差的试样仍能得到很好的分子离子峰,分子中的C-C 键一般不会断裂,因而很少生成碎片离子。总之,场致电离和场解析电离源都是对电子轰击源的必要补充,使用复合离子源,则可同时获得完整分子和官能团信息。 5.试述化学电离源的工作原理. 答:化学电离源内充满一定压强的反应气体,如甲烷、异丁烷、氨气等,用高能量的电子(100eV)轰击反应气体使之电离,电离后的反应分子再与试样分子碰撞发生分子离子反应形成准分子离子QM+,和少数碎片离子。在CI谱图中,准分子离子峰往往是最强峰,便于从QM+推断相对分子质量,碎片峰较少,谱图简单,易于解释。 6.有机化合物在电子轰击离子源中有可能产生哪些类型的离子?从这些离子的质谱峰中可以得到一些什么信息? 答:(1)分子离子。从分子离子峰可以确定相对分子质量。(2)同位素离子峰。当有机化合物中含有S,Cl,Br等元素时,在质谱图中会出现含有这些同位素的离子峰,同位素峰的强度比与同位素的丰度比相当,因而可以也来判断化合物中是否含有某些元素(通常采用M+2/M强度比)。(3)碎片离子峰。根据碎片离子峰可以和阐明分子的结构。另外尚有重排离子峰、两价离子峰、亚稳离子峰等都可以在确定化合物结构时得到应用。 7.如何利用质谱信息来判断化合物的相对分子质量?判断分子式? 答:利用分子离峰可以准确测定相对分子质量。 高分辨质谱仪可以准确测定分子离子或碎片离子的质荷比,故可利用元素的精确质量及丰度比计算元素组成。 8.色谱与质谱联用后有什么突出特点? 答:质谱法具有灵敏度高、定性能力强等特点。但进样要纯,才能发挥其特长。另一方面,进行定量分析又比较复杂。气相色谱法则具有分离效率高、定量分析简便的特点,但定性能力却较差。因此这两种方法若能联用,可以相互取长补短,其优点是:(1)气相色谱仪是质谱法的理想的“进样器”,试样经色谱分离后以纯物质形式进入质谱仪,就可充分发挥质谱法的特长。(2)质谱仪是气相色谱法的理想的“检测器”,色谱法所用的检测器如氢焰电离检测器、热导池检测器、电子捕获检测器都具有局限性。而质谱仪能检出几乎全部化合物,灵敏度又很高。 所以,色谱—质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力。这种技术适用于作多组分混合物中未知组分的定性鉴定;可以判断化合物的分子结构;可以准确地测定未知组分的分子量;可以修正色谱分析的错误判断;可以鉴定出部分分离甚至末分离开的色谱峰等。因此日益受到重视,现在几乎全部先进的质谱仪器都具有进行联用的气相色谱仪,并配有计算机,使得计算、联机检索等变得快捷而准确。 9.如何实现气相色谱-质谱联用? 答:实现GC-MS联用的关键是接口装置,起到传输试样,匹配两者工作气体的作用。 10.试述液相色谱-质谱联用的迫切性. 答:生命过程中的化学是当前化学学科发展的前沿领域之一。高极性、热不稳定、难挥发的大分子有机化合物和生物样品难以采用GC-MS进行分析。液相色谱虽然不受化合物沸点的限制,并能对热稳定性差的试样进行分离、分析,但由于其定性能力差,所以应用得到来极大的限制。这类化合物的分离分析成为分析化学家面临的重大挑战。开发液相色谱与有机质谱的联用技术是迫切需要解决的课题。本文档为【仪器分析知识点整理(1)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。

  [版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件,我们尽快处理。

  本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。

  网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

  《92 液体压强-93 气体压强》2011年提优拓展训练[精心整理]

  北师大版2021-2022年小学语文六年级下册第一次月考测试题(一)(II)卷

Copyright © 2018-2024 华体会(hth)体育最新登录-IOS/安卓/手机app下载 版权所有  xml地图  网站地图  备案号:

地址:广东省广州市天河区工业区88号 电话:400-123-4567 邮箱:admin@vnmsw.com

关注我们